
16 The Delphi Magazine Issue 54

Private Eyes
Lock the doors, draw the curtains:
we talk about encryption

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

In December 1999’s Algorithms
Alfresco column, I showed how to

write a rudimentary spell checker.
To aid in this endeavor, I provided
a word list: a fairly complete alpha-
betic list of English words origi-
nally compiled for Scrabble
players. Originally, I also had the
idea of discussing another use for
this word list: cracking passwords.
However, it turned out that the
December article was big enough
already, and so I put it to one side.

Then one of my readers asked
me whether I’d considered writing
an article or two on encryption
algorithms. He wanted a Delphi
perspective on some of the stan-
dard algorithms, and also a back-
to-basics introduction to encryp-
tion. Okay...

And then came the clincher: Our
Esteemed Editor, just prior to his
wedding at the end of last year,
sent me an email, part of which was
a suggestion to ‘do’ encryption in
my Algorithms Alfresco column. I
don’t know about you, but when
the man with the money ‘suggests’
something, I tend to listen! And,
anyway, why was he thinking
about encryption just before his
wedding? Mmm...

So, without further ado,
encryption.

Adult Education
Before we start in earnest, it will
help if I present a small glossary of
cryptographic terms. Then we’ll be
on the same page when we start
delving into the algorithms proper.

The whole purpose of cryptogra-
phy is to enable person A (usually
called Alice in the literature) to
send a message to person B (who’s
referred to as Bob). Furthermore,
Alice must send this message to
Bob with the anticipation that
person E (the eavesdropper or
enemy, usually called Eve) can and
will intercept the message
somehow. The requirement of

cryptography is to alter the mes-
sage using some algorithm in order
to make it extremely difficult for
Eve to first of all read the message,
and second to substitute another
message that Bob would assume to
be a real message from Alice. The
algorithm that translates the
message is known as a cipher, or
encryption algorithm.

The original message that Alice
writes is called the plaintext. When
she applies the encryption algo-
rithm, it will produce another,
encrypted, message called the
ciphertext. Bob’s job, when he
receives the ciphertext, is to apply
the inverse encryption algorithm,
called the decryption algorithm, to
get at the original plaintext. It will
come as no surprise that the
encryption and decryption algo-
rithms are very closely related,
and in fact generally are just known
as the encryption algorithm.

Modern algorithms are generally
well defined, well known and well
studied. To provide the actual
security, the algorithms use a key
(or sometimes, password). This key
is usually a large binary number
and must remain secret between
Alice and Bob. Indeed, I’m sure
you’ve heard of 40-bit or 56-bit
encryption methods such as the
Data Encryption Standard (DES),
where the ‘bit value’ is merely the
length of the key in bits. In stan-
dard DES, for example, the length
of the key is 56 bits long, or 7 bytes.
To encrypt a message, Alice plugs
the key into the encryption algo-
rithm, and to decrypt, Bob plugs
the same key into the decryption
algorithm. These encryption algo-
rithms are known as symmetric
algorithms. The security of the
system is determined by the
secrecy of the key: once the key is
known by Eve, the system is use-
less to Alice and Bob. Note that the
security of the system is not deter-
mined by the secrecy of the

algorithm. This is a common fal-
lacy. If a system uses a secret
algorithm, it usually means that it
is easy to crack. In this day and
age, with the plethora of public
domain and commercial algo-
rithms, it is simply not worth it to
use an encryption algorithm that is
secret.

Public-key algorithms work in a
different way entirely. These algo-
rithms use two keys: a public key
and a private key. With this
system, Bob publishes to the
world his public key. When Alice
wants to send him a message, she
encrypts the plaintext with this
public key and sends the
ciphertext. When Bob receives the
message, he decrypts it with his
own personal private key. The
most famous program for doing
this type of encryption is Pretty
Good Privacy (PGP).

Sometimes public-key algo-
rithms work in the opposite fash-
ion, Alice encrypting a message
with her private key and Bob
decrypting it with Alice’s public
key. These types of algorithms are
usually known as digital signatures:
the premise being that if Bob can
decrypt a message with Alice’s
public key, the message can only
have come from Alice. The
message has no secret content
whatsoever. Like real signatures,
digital signatures are appended to
‘documents’ and, through a simple
application of the public key, Bob
can verify that the document is
really from Alice. Documents in
this context could mean text, or
programs, or ActiveX compo-
nents, or whatever you like. At
TurboPower, for example, we

February 2000 The Delphi Magazine 17

digitally sign the packages for our
products to show that they have
come from us. We use a company
called VeriSign to hold our public
key and using a Windows program
you can automatically check the
provenance of the packages.

In all this discussion, we’ve been
mostly talking about Alice or Bob.
What about Eve? What’s she going
to do to try and read Alice’s
ciphertext? Here we assume that
Eve knows the encryption algo-
rithm used by Alice and Bob, but
she doesn’t know the key. She
would like to crack a message such
that she gets to deduce the key and
then read all further ciphertext
messages with impunity. Each
attempt to crack a message is
known as an attack and the easiest
attack to understand is the
brute-force attack. With this attack,
she’ll just try key after key after
key, until she eventually recovers
the plaintext. Here, the longer the
key, the longer it will take her.
Indeed, the relationship is an expo-
nential one. For an 8-bit key, Eve
would have to try up to 28 or 256 dif-
ferent keys. For a 16-bit key, twice
as long, that’s 65,536 different
keys. For the DES algorithm, seven
times as long as an 8-bit key, that’s
7*1016 different keys. If she could
check a billion keys per second it
would take her up to 2.28 years to
find the key. If Eve knew that Alice
and Bob were in the habit of using 7
ASCII characters for their DES key,

she wouldn’t have to try nearly as
many keys to crack a message and
indeed could crack it in about 8
seconds at the same rate.

If she’s worth her salt, she’ll
employ a cryptanalyst to try and
crack the message. Cryptanalysis is
the science (or art?) of analyzing
encryption algorithms together
with some ciphertext or plaintext
or both in order to identify the key
used to encrypt the plaintext.

Guessing Games
Classically (in other words, in
times prior to computers), encryp-
tion algorithms were very simple.
In general, they always acted on
letters of the alphabet, generating
ciphertext that was also com-
prised of alphabetic letters. There
are two main types of classic
encryption algorithms: substitu-
tion ciphers and transposition
ciphers.

A substitution cipher is the sim-
plest and oldest encryption algo-
rithm. Each character in the
plaintext is substituted by another
character to produce the cipher-
text. The most famous of these is
known as the Caesar cipher. With
this algorithm, each character is
replaced by the one n letters
further along the alphabet (with a
wraparound at the end, obvi-
ously). Thus, if n were 3, the cipher
Julius Caesar was rumored to use,
A is replaced by D, B by E, X by A, Y
by B, and so on. Decryption is
simple: substitute each character
in the ciphertext with the one n

letters before. For example, you
can easily decrypt FDHVDU as
CAESAR, knowing that n were 3.
Indeed, even if you didn’t know the
value of n, the cipher is simplicity
to break: there are only 25 possible
values of n (n=0 makes no sense as
an encryption algorithm!), and
writing a cracker program to break
the Caesar cipher is trivial. Prior to
the computer age, the easiest way
to crack a Caesar cipher was to
write the ciphertext down, and
then to extend the alphabet down
from each ciphertext letter:

F D H V D U
———————————
G E I W E V
H F J X F W
I G K Y G X
.
B Z D R Z Q
C A E S A R

Eventually, you’d get a line that
made sense; this would be the
plaintext.

Another example of a Caesar
cipher is found on UNIX systems,
especially for messages on
newsgroups. ROT13 is a Caesar
cipher with n=13, and is easy to use
in that a message encrypted with
ROT13 is decrypted by applying
ROT13 to the ciphertext. Conse-
quently, its main use is not for
encrypting messages securely, but
for temporarily hiding information
so that casual viewers are not
upset by it (for example, risqué
jokes) or that they would only like
to see after they’d made a choice
to do so (for example, spoilers for
an adventure game or movie).

Listing 1 shows code that imple-
ments any Caesar cipher: the N
parameter defines how many let-
ters the algorithm is to advance
through the alphabet to encrypt
each character in the plaintext. To
decrypt, the routine internally exe-
cutes the same code, but forces N
to 26-N. So, for example, if you were
to encrypt with N=3, the routine
would decrypt with N=23. ROT13 is
simple to implement: N=13.

The Caesar cipher is an example
of a more generalized mono-
alphabetic cipher. Here we are still
substituting each plaintext letter

procedure AACaesarCipher(aEncrypt : boolean; N : integer; aInStream : TStream;
aOutStream : TStream);

var
BytesRead : longint;
i : integer;
Ch : byte;
Buf : array [0..255] of byte;

begin
{force N in range 0..25}
N := N mod 26;
if (N < 0) then
inc(N, 26);

if not aEncrypt then
N := 26 - N;

{read through the input stream in blocks, encrypt the block, and
write it to the output stream--only convert A-Z and a-z}
BytesRead := aInStream.Read(Buf, sizeof(Buf));
while (BytesRead > 0) do begin
for i := 0 to pred(BytesRead) do begin
Ch := Buf[i];
if ((ord('A') <= Ch) and (Ch <= ord('Z'))) then
Buf[i] := ((Ch - ord('A') + N) mod 26) + ord('A')

else if ((ord('a') <= Ch) and (Ch <= ord('z'))) then
Buf[i] := ((Ch - ord('a') + N) mod 26) + ord('a')

end;
aOutStream.Write(Buf, BytesRead);
BytesRead := aInStream.Read(Buf, sizeof(Buf));

end;
end;

➤ Listing 1: The Caesar cipher.

18 The Delphi Magazine Issue 54

to the same ciphertext letter, but
now we don’t rotate the alphabet
to do so, we just randomly gener-
ate the translation table. All
monoalphabetic ciphers are very
insecure since they can all be
attacked by the letter frequency
method: calculating the frequen-
cies of ciphertext letters. In the
English language, the letters E, T,
A, I and N predominate, so the first
thing to try would be translating
the most frequent ciphertext letter
to an E and see what we got. We
continue along in this vein, experi-
menting and trying to recognize
individual words until we have
fully decoded the ciphertext. It
must be noted that if we can detect
individual words in the ciphertext,
it makes cracking much easier so,
in general, the ciphertext is sent
without spaces or punctuation.

Unguarded Minute
A variation of this is the Vigenère
cipher. This algorithm is a
polyalphabetic substitution cipher
where we use several simple sub-
stitution ciphers sequentially. This

cipher also requires a password or
key, a word that will be used to
determine the substitutions
required. Suppose Alice wanted to
encrypt the string ‘This is a
message’ with the password
‘SECRET’. First she uppercases
everything, and then removes all
non-alphabetic characters. She
writes down this compressed mes-
sage with the password (repeated,
if necessary) underneath:

THISISAMESSAGE
SECRETSECRETSE

The substitution depends on the
current letter of the password line.
The first letter of the password line
is S. She writes the alphabet down,
and then underneath the alphabet
rotated so that the S appears under
the A:

ABCDEF...TUVWXYZ
STUVWX...LMNOPQR

She can now encode the T in the
plaintext as an L. The next letter of
the password line is E, so she gen-
erates a new conversion table in
the same manner:

ABCDEFGH...VWXYZ
EFGHIJKL...ZABCD

From this we see that the next
ciphertext letter is L again. She
continues like this until the entire
plaintext is encoded. Bob, when he
receives the message, performs
the same kind of method to
decrypt the message. To make it
easier for both Alice and Bob,
Vigenère ciphers usually use a
26*26 table of characters with each
line having the alphabet shifted left
by 1 from the previous one. Figure
1 shows this table. Remember this
is in the days prior to computers:
although this system is named the
Vigenère cypher, it was first
devised by Giovan Batista Belaso
in 1553; Blaise de Vigenère pro-
posed a slight modification where
the plaintext follows the password,
instead of the password endlessly
being repeated.

To encode, you find the pass-
word letter along the left and the
plaintext letter along the top and

the point where the designated
row and column cross is the
ciphertext letter. To decode, find
the password letter along the side,
follow the row until you reach the
ciphertext letter and then look up
the column to the top to find the
plaintext letter.

And Eve? What does she do? She
knows that Alice and Bob are using
a Vigenère cipher, so she sets to
work. The first thing to note is that
she must have a ciphertext that is
much longer than the key, because
the first thing she tries to do is
work out the length of the key that
was used for encryption. To do
this she takes the ciphertext and
compares it with the ciphertext
that has been rotated by 1, 2, 3, etc,
letters. She then counts the
number of coincident letters at
each position for each rotation.
Because of the fact that the
plaintext is written in English, and
certain plaintext letters are more
common than others, she’ll find
that rotations that are a multiple of
the key length will have more coin-
cidences than rotations that are
not. This will give a good indica-
tion of the length of the key. From
this she has a good basis for crack-
ing the rest of the message and
finding out the key.

Suppose she finds that the key
length was 6. This means that let-
ters 1, 7, 13, etc, were all encoded
with the same Caesar cipher. Let-
ters 2, 8, 14, etc, were encoded
with another Caesar cipher, and so
on. Using a table of the frequencies
of the letters in the English lan-
guage, she can now make assump-
tions about the ciphertext letters
by matching frequencies of
ciphertext against English lan-
guage frequencies. Without too
much trouble, she should be able
to work out each Caesar cipher,
and hence the password, and
hence the plaintext. Obviously for
this to have some chance of
success, the ciphertext must be
several times the length of the key
or password used to produce it.

Listing 2 is an implementation of
the Vigenère cipher. There are four
parameters to the routine:
whether to encrypt or decrypt, the
key, the plaintext as a stream, and

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY

➤ Figure 1: A complete
Vigenère substitution table.

20 The Delphi Magazine Issue 54

finally the ciphertext, also as a
stream.

I Can’t Go For That
There is a variant of the Vigenère
cipher that is used throughout the
computer industry. It is easy to
implement, and not particularly
difficult to break either. I’m talking
about the XOR cipher.

Alice and Bob agree on a key.
This key doesn’t have to be purely
alphabetic characters, in fact it’s
better if it isn’t, and the longer this
key is, the better. To encrypt
plaintext, Alice starts off with the
first byte of the message and the
first byte of the key. She XORs
them together, and outputs the
resulting byte as the first byte of
the ciphertext. She advances one
character, and does the same.
When she runs out of bytes in the
key, she starts over from the begin-
ning of the key again. To decrypt,
Bob does exactly the same, and the
plaintext will be recovered, since
XORing a byte twice with the same
value results in the original byte.

Listing 3 has this simple XOR
cipher. Again we pass in a key and
two streams, one stream for the
plaintext and one for the cipher
text.

To crack this cipher, Eve pro-
ceeds in the same manner as for
the Vigenère cipher. She first
attempts to find coincidences
between the ciphertext and the
ciphertext shifted by various

displacements. The shifts that are
multiples of the key length will
have more coincidences than
those that are not. From this we
can deduce the key length. Now we
take the ciphertext and XOR it with
itself shifted along by the key
length. This will basically XOR the
text with itself and removes the key
entirely. From this we can then
start applying some letter distribu-
tions to try and crack the XORed
message.

This type of cipher is used in var-
ious applications all over the place.
Possibly the most egregious use of
the XOR cipher is with a Windows
CE system: you set a password that
is used to protect your palmtop.
When you switch the device on,
you are prompted for the pass-
word. Simple enough. Anyway,
ActiveSync, the program you run
to allow you to synchronize the
data on your palmtop with your
desktop, uses the same password.

When you start ActiveSync, it
prompts you for your Windows CE
password. You are given the
option to save the password on
your desktop machine so that you
don’t have to supply it every time
you want to synchronize your
machines. It saves the password,
encrypted, in your registry. How-
ever, the encryption it uses is a
simple XOR cipher with ‘susageP’
as the key. Why this key? Well, the
code name for Windows CE was
‘Pegasus’ and if you reverse it, you
get ‘susageP’ (see www.cegadgets.
com/artsusageP.htm for the full
sorry story).

Actually, having severely lam-
basted the XOR cipher, there is a
way in which it can be used to pro-
duce an unbreakable cipher. This
unbreakable cipher is known as
the one-time pad. Classically, the

procedure AAXORCipher(aKey : PByteArray; aKeyLen : integer; aInStream : TStream;
aOutStream : TStream);

var
Buf : array [0..1023] of byte;
KeyInx : integer;
i : integer;
BytesRead : longint;

begin
{read through the input stream in blocks, XOR the block with the key
and write it to the output stream}
if (aKey = nil) or (aKeyLen = 0) then
raise Exception.Create('Cannot encrypt with XOR: the key is missing');

KeyInx := 0;
BytesRead := aInStream.Read(Buf, sizeof(Buf));
while (BytesRead > 0) do begin
for i := 0 to pred(BytesRead) do begin
Buf[i] := Buf[i] xor aKey^[KeyInx];
KeyInx := (KeyInx + 1) mod aKeyLen;

end;
aOutStream.Write(Buf, BytesRead);
BytesRead := aInStream.Read(Buf, sizeof(Buf));

end;
end;

➤ Listing 3: The simple XOR
cipher.

procedure AAVigenereCipher(aEncrypt : boolean;
aKey : string; aInStream : TStream; aOutStream : TStream);

var
BytesRead : longint;
i, j : integer;
Ch : byte;
Buf : array [0..255] of byte;
OutBuf : array [0..255] of byte;
KeyValues : array [0..255] of byte;
KeyLen : integer;
KeyInx : integer;

begin
{the Vigenere cipher is for uppercase alphabetic letters
only; in calculating the key values assume the key is in
such a state}

KeyLen := 0;
for i := 1 to length(aKey) do
if ('a' <= aKey[i]) and (aKey[i] <= 'z') then begin
KeyValues[KeyLen] := ord(aKey[i]) - ord('a');
inc(KeyLen);

end
else if ('A' <= aKey[i]) and (aKey[i] <= 'Z') then begin
KeyValues[KeyLen] := ord(aKey[i]) - ord('A');
inc(KeyLen);

end;
if not aEncrypt then
for i := 0 to pred(KeyLen) do
KeyValues[i] := 26 - KeyValues[i];

{read through the input stream in blocks, encrypt the
block, and write it to the output stream--only convert
and write A-Z and a-z}

KeyInx := 0;
BytesRead := aInStream.Read(Buf, sizeof(Buf));
j := 0;
while (BytesRead > 0) do begin
for i := 0 to pred(BytesRead) do begin
Ch := Buf[i];
if ((ord('A') <= Ch) and (Ch <= ord('Z'))) then begin
OutBuf[j] := ((Ch - ord('A') + KeyValues[KeyInx])
mod 26) + ord('A');

inc(j);
KeyInx := (KeyInx + 1) mod KeyLen;

end
else if ((ord('a') <= Ch) and (Ch <= ord('z'))) then
begin
OutBuf[j] := ((Ch - ord('a') + KeyValues[KeyInx])
mod 26) + ord('A');

inc(j);
KeyInx := (KeyInx + 1) mod KeyLen;

end;
end;
aOutStream.Write(OutBuf, j);
BytesRead := aInStream.Read(Buf, sizeof(Buf));
j := 0;

end;
end;

➤ Listing 2: The Vigenère cipher.

22 The Delphi Magazine Issue 54

one-time pad was a Vigenère
cipher, but with a key that was
totally random and the same
length as the plaintext. What hap-
pens is this. Alice and Bob get
together and create a pad of pages,
with each page having a sequence
of letters on it generated randomly.
The pad is duplicated with Alice
taking one and Bob taking the
other. Now when Alice wants to
send Bob a message she uses the
standard Vigenère cipher, but with
each letter of the plaintext being
married to each letter in sequence
from the top page of the pad. She
continues to encrypt the plaintext,
using as many pages of the pad as
are required. Once done, she sends
the ciphertext and then destroys
the pages she has used. Bob uses
his pad in the same manner to
decrypt the ciphertext, and when
he’s done he destroys the same
pages. Since the key is totally
random and, furthermore, is never
used again (hence, one-time pad),
there is no way Eve could get a
handle on the original plaintext.
She can’t use letter frequencies
since the same letter will be ran-
domly encrypted with a different
key letter every time. There’s no
attack to try and deduce the key
length, since the length of the key
is the same as the length of the
plaintext. Totally unbreakable.

In the XOR case, the same thing
happens. A very large set of
random bytes is generated and
Alice and Bob both get a copy.
Alice encodes her plaintext by
extracting out the same number of
bytes from her random number
table as there are bytes in the
plaintext and then XORs them
together. The ciphertext is sent,
and Alice destroys the random
bytes she has used. Bob gets the
ciphertext, and uses the same
number of random bytes as there
are bytes in the ciphertext, and
destroys the used random bytes in
the same manner as Alice. Again,
Eve has no chance to decrypt the
ciphertext for the same reasons as
in the classic case.

Mind you, if Alice and Bob cre-
ated their random bytes by
seeding the Delphi random
number generator and then calling

it to generate random bytes, Eve
has a chance again. Since the entire
sequence of random bytes gener-
ated by this method is determinis-
tic (in other words, if Eve started
with the same seed she’d get the
same random bytes), she has a
chink that she can lever open. All
she has to do is to try each seed in
sequence, until the ciphertext is
cracked. If you like, the one-time
pad suddenly becomes an encryp-
tion method with a 32-bit key and, if
Eve has a fast enough machine, she
would be able to crack the
ciphertext fairly quickly. Neverthe-
less, such randomized encryption
algorithms are fairly popular and
there is a whole subset of random
number generators that are
designed to be cryptographically
secure.

Your Imagination
After all this exposition on substi-
tution ciphers, we should take a
look at transposition ciphers, the
other classical method for encrypt-
ing plaintext. A transposition cipher
is one where the letters in the
plaintext are not converted in any
way; it is just their order that is jum-
bled up. The simplest of these
ciphers is the columnar transposi-
tion cipher. Write the plaintext on
squared paper, with one letter per
box. Limit the width of the squared
paper to a certain number of cells.
Read off the ciphertext a column at
a time. So, for example, if the
plaintext was ‘ONCE MORE UNTO
THE BREACH DEAR FRIENDS,’ and
our squared paper was 10 boxes
wide, we’d get

ONCEMOREUN
TOTHEBREAC
HDEARFRIEN
DS

By reading the letters vertically, we
get the ciphertext ‘OTHDNODS...’
To decrypt this message we need
to know the width of the squared
paper. Count the letters in the
ciphertext and divide this by the
width to give you the number of let-
ters to write vertically and so the
ability to decode the ciphertext.

In World War I, the Germans
devised the ADFGVX cipher, a

mixture between a transposition
cipher and a substitution cipher. It
was a sophisticated encryption
algorithm for its day. It’s also a
‘wordy’ algorithm, since every
letter in plaintext is converted into
two letters in the final ciphertext.

Create a 6*6 square, naming
each row and column after the let-
ters A, D, F, G, V, X, as in Figure 2.
Randomly put each letter of the
alphabet into this square, together
with the ten digits (36 characters
in all). The first stage is a substitu-
tion cipher: we replace each letter
in the plaintext with the row and
column identifier according to
where the letter was found. For
example, using Figure 2, the
plaintext letter J would be
replaced by DF, since J is at the
junction of row D and column F.

Now we have to decide on a
password. Let’s use the word
SECRET. Discard any repeated let-
ters in the password, so we have
SECRT. Write the intermediary
ciphertext out (the one that just
consists of ADFGVX letter pairs)
under the word SECRT as in the
standard columnar transposition
cipher. Here we will have only five
columns, of course. Now we read
off the letters in the columns, not
from the first to the last, but
according to the position of the
column header letter in the
alphabet. So, for SECRT, we read
the C column first, then the E
column, the R column, the S
column and, finally, the T column.
The result is a hodge- podge of As,
Ds, Fs, Gs, Vs, and Xs. To decrypt
we’d need to know the password
and also the substitution table.

To demonstrate the algorithm,
Alice decides to send the message

|A D F G V X
-+-----------
A|U H N A X O
D|2 B J V D 4
F|P T 3 K 5 G
G|E 1 I S 9 7
V|0 F 8 C W Y
X|Z Q M R 6 L

➤ Figure 2: An example
substitution table for the
ADFGVX cipher.

February 2000 The Delphi Magazine 23

‘THEYAREONTOYOU’. She per-
forms the first substitution cipher,
replacing the T with FD, the H with
AD, and so on. She places the
resulting letter pairs into a
5-column transposition table

under the word SECRT, as in Figure
3. She then reads the C column
first: AXGFV, the E column: DVGAX,
and so on, to make the ciphertext
AXGFVDVGAX...

Bob can reconstruct the trans-
position table because he knows
the password, and since he also

knows the substitution table he
can work out the original plaintext.
And poor Eve? Well, there doesn’t
seem to be any rhyme or reason to
the collection of these 6 letters,
repeated and shuffled seemingly at
random. But, surprisingly, this
cipher was actually broken using

procedure AAADFGVXCipher(aEncrypt : boolean; aKey : string;
const aSubstTable: TaaADFGVXTable; aInStream : TStream;
aOutStream : TStream);

const
ADFGVX : array [0..5] of char = 'ADFGVX';

var
BytesRead : longint;
i, j : integer;
Ch : char;
Buf : array [0..255] of char;
DblBuf : array [0..511] of char;
CleanKey : string;
KeyLen : integer;
KeyInx : integer;
PosCh : integer;
MinInx : integer;
ColLen : integer;
Row, Col : integer;
SubstTextSize : longint;
InStreamSize : longint;
MemStream : TMemoryStream;

begin
{clean up the key so that it consists only of unique
uppercase characters}

CleanKey := '';
for i := 1 to length(aKey) do begin
Ch := upcase(aKey[i]);
if ('A' <= Ch) and (Ch <= 'Z') then
if (Pos(Ch, CleanKey) = 0) then
CleanKey := CleanKey + Ch;

end;
{===ENCRYPTION===}
if aEncrypt then begin
{read the entire input stream, converting into
letterpairs into a temporary stream}

MemStream := TMemoryStream.Create;
try
BytesRead := aInStream.Read(Buf, sizeof(Buf));
while (BytesRead > 0) do begin
j := 0;
for i := 0 to pred(BytesRead) do begin
Ch := upcase(Buf[i]);
if (('A' <= Ch) and (Ch <= 'Z')) or

(('0' <= Ch) and (Ch <= '9')) then begin
PosCh := Pos(Ch, aSubstTable) - 1;
DblBuf[j] := ADFGVX[PosCh div 6];
DblBuf[j+1] := ADFGVX[PosCh mod 6];
inc(j, 2);

end;
end;
MemStream.Write(DblBuf, j);
BytesRead := aInStream.Read(Buf, sizeof(Buf));

end;
{now read the letters in each column according to the
order of the letters in the cleaned key}

KeyLen := length(CleanKey);
for KeyInx := 1 to KeyLen do begin
{find the smallest letter in the key, this is the
column we'll be reading next}

MinInx := 1;
for i := 2 to KeyLen do
if (CleanKey[i] < CleanKey[MinInx]) then
MinInx := i;

CleanKey[MinInx] := #127; {so we don't see it again}
dec(MinInx); {it's easier with a 0-based number}
{starting off with the MinInx'th letter in the
temporary stream, copy it and every KeyLen'th
letter after that to the output stream}

SubstTextSize := MemStream.Size;
PosCh := MinInx;
j := 0;
while (PosCh < SubstTextSize) do begin
MemStream.Position := PosCh;
inc(PosCh, KeyLen);
MemStream.Read(DblBuf[j], 1);
inc(j);
if (j = sizeof(DblBuf)) then begin
aOutStream.Write(DblBuf, sizeof(DblBuf));
j := 0;

end;
end;
if (j > 0) then
aOutStream.Write(DblBuf, j);

end;
finally
MemStream.Free;

end;
end else begin

{===DECRYPTION===}
{first create memory stream to use as an intermediary,
set its size to the size of the input stream}
InStreamSize := aInStream.Size;
MemStream := TMemoryStream.Create;
try
MemStream.SetSize(InStreamSize);
{now read the letters in each column according to the
order of the letters in the cleaned key}

KeyLen := length(CleanKey);
for KeyInx := 1 to KeyLen do begin
{find the smallest letter in the key, this is the
column we'll be reading next}

MinInx := 1;
for i := 2 to KeyLen do
if (CleanKey[i] < CleanKey[MinInx]) then
MinInx := i;

CleanKey[MinInx] := #127; {so we don't see it again}
dec(MinInx); {it's easier with a 0-based number}
{calculate the length of this column}
ColLen := InStreamSize div KeyLen;
if ((InStreamSize-(ColLen*KeyLen)) > MinInx) then
inc(ColLen);

{copy the column from the input stream to the
temporary stream, starting off by copying to the
MinInx'th letter in the temporary stream, and
every KeyLen'th letter after that; we stop at the
end of the column}

PosCh := MinInx;
while (ColLen > 0) do begin
if (ColLen > sizeof(Buf)) then
BytesRead := aInStream.Read(Buf, sizeof(Buf))

else
BytesRead := aInStream.Read(Buf, ColLen);

dec(ColLen, BytesRead);
for i := 0 to pred(BytesRead) do begin
MemStream.Position := PosCh;
inc(PosCh, KeyLen);
MemStream.Write(Buf[i], 1);

end;
end;

end;
{now read the temporary stream as letter pairs,
converting them into the original characters for the
output stream}

MemStream.Position := 0;
BytesRead := MemStream.Read(DblBuf, sizeof(DblBuf));
j := 0;
Row := 0;
Col := 0;
while (BytesRead > 0) do begin
for i := 0 to pred(BytesRead) do begin
if not Odd(i) then begin
case DblBuf[i] of
'A' : Row := 0;
'D' : Row := 1;
'F' : Row := 2;
'G' : Row := 3;
'V' : Row := 4;
'X' : Row := 5;

end;
case DblBuf[i+1] of
'A' : Col := 0;
'D' : Col := 1;
'F' : Col := 2;
'G' : Col := 3;
'V' : Col := 4;
'X' : Col := 5;

end;
Buf[j] := aSubstTable[Row * 6 + Col + 1];
inc(j);
if (j = sizeof(Buf)) then begin
aOutStream.Write(Buf, sizeof(Buf));
j := 0;

end;
end;

end;
if (j > 0) then
aOutStream.Write(Buf, j);

BytesRead := MemStream.Read(DblBuf, sizeof(DblBuf));
end;

finally
MemStream.Free;

end;
end;

end;

➤ Listing 4: The ADFGVX cipher.

24 The Delphi Magazine Issue 54

S E C R T

F D A D G
A V X A G
X G G A A
X A F F D
A X V X A

➤ Figure 3: Encoding with the
ADFGVX cipher.

the fact that the two stages are
totally disconnected from each
other, and that the transposition
password is not used in the
substitution.

The code? Well, it’s very messy,
as you can imagine. Listing 4 shows
the full ADFGVX cipher code and,
as you can see, we can’t share
much code between encryption
and decryption as in the previous
three ciphers. This month’s disk
also has a routine to generate a
random shuffling of the letters and
digits for the substitution table.

Looking For A Good Sign
As a final note in this article on clas-
sic ciphers, I would like to mention
the ENIGMA machine. This was the
encryption device used by the
German Army and Navy in the
Second World War. I’d quickly like
to discuss it for two reasons.
Firstly, it was a very sophisticated
encryption machine. And, sec-
ondly, breaking its encryption fell
to a team of mathematicians at
Bletchley Park in Bucking-
hamshire, including one of the
fathers of modern computing, Alan
Turing. The ENIGMA machine was
essentially a rotor machine, using
three rotors. A rotor is a wheel that
is wired to perform a mono-
alphabetic substitution. The wheel
was divided into 26 segments, one
for each letter, and was designed in
such a way that each segment on
the face was wired to a different
segment on the reverse. If each seg-
ment on the reverse was wired to a
light, applying electrical current to
a segment on the face would cause
the light for the encrypted letter to
light up. The ENIGMA machine con-
nected its three rotors in series, so
each rotor applied a substitution.
To ensure that the same substitu-
tion was not used over and over,
the rotors would be rotated by a
number of segments after a letter
was encrypted. Furthermore, the
ENIGMA machine used the concept
of a reflecting rotor that caused the
circuit to be reflected through the
three rotors again, backwards,
doubly encrypting each plaintext
letter. There was a keyboard by
which the plaintext could be typed
for encryption (or the ciphertext

for decryption), the action of
pressing a key would perform the
rotations, and the resulting
ciphertext letter was read off a set
of 26 lights when power was
applied through the rotors. To
make it even harder to crack, the
initial position of the rotors could
be defined prior to encrypting or
decrypting the message. There
was also a plugboard that
remapped pairs of letters prior to
the encryption. All in all, a
fearsome encryption machine.

Breaking the ENIGMA encryp-
tion relied on complex mathemat-
ics from the most brilliant
mathematicians in England, and
also quite a bit of luck. The Allies
had managed to obtain an ENIGMA
machine and some of the code
books (these books detailed which
rotors were to be used on which
days, initial positions of the rotors,
and so on), and they had a stroke of
luck in that the operators disliked
changing the rotors (apparently,
a tedious process), so one of
the encryption possibilities was
negated. Nevertheless, the British
team, including Alan Turing, man-
aged to break the encryption by
building a machine called The
Bombe, which helped analyze the
ciphertext. Considering the impor-
tance of Turing’s work during the
War, his subsequent treatment by
the British Government in 1952,
when he was arrested for a homo-
sexual liaison and stripped of his
security clearance, was nothing
short of scandalous, and probably
led to his death by suicide in 1954.

Crime Pays
This month’s disk has the full code
for all the ciphers, together with a

small driver/test program that
encrypts and decrypts with each
encryption algorithm. You get to
supply the text to be encrypted
and you can see the encrypted and
decrypted versions of that text.

I hope you’ve enjoyed this small
foray into classic encryption algo-
rithms. In the near future, I plan to
continue this topic by looking at
some of the famous modern com-
puter encryption algorithms such
as DES and RSA. Until then,
HAPPYPROGRAMMING.

References
Applied Cryptography

by Bruce Schneier.
www.turing.org.uk

for information on Alan Turing.

Julian Bucknall is busy writing the
book for the new millennium,
listening to early 80s music in the
hall, eating porridge. He can be
contacted via email at julianb@
turbopower.com. The code that
accompanies this article is
freeware and can be used as-is in
your own applications.

© Julian M Bucknall, 2000

	Adult Education
	Guessing Games
	Unguarded Minute
	I Can’t Go For That
	Your Imagination
	Looking For A Good Sign
	Crime Pays
	References

